Hardware signaling paradigm for resource reservation

Israel Cidon
Department of Electrical Engineering
Technion

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece
The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING Israel Cidon

1

Short EE networking history

- Software packet switch general purpose
 - Up to 1000s packets per second
- Routers built as parallel machines
 - Up to 10,000s packets per second
- Special hardware implementations
 - -> 100,000,000 packets per second

Next generation services gaps

- Guaranteed, limited time p-t-p connection
- Large RT conferencing
- Video on demand pay per view/listen
- Guaranteed large downloads
- RT Webcast
- Need user differentiation of valued vs. low significance traffic, not flow specs
- Gap in QoS support not in raw throughput

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece
The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING Israel Cidon

3

Good old ways for QoS Support

- Reserve per connection for call duration
 - Requires massive signaling
 - Selection of available path
 - Statefull soft-state increases CPU heat
 - More calls per second than ever imagined

Practice – limit call demand to protect computation resources using aggregation

Modern QoS Support

- Over-provisioning
 - Cost, lack of differentiation, garbage dominates
- Network wide QoS classes
 - Coarse, lack of scalability, no real-time
- Signaling aggregation MPLS LSPs or ATM VPs
 - Quasi-static, aggregated flows only (VPN)
 - Save signaling & routing CPU cycles adds complexity

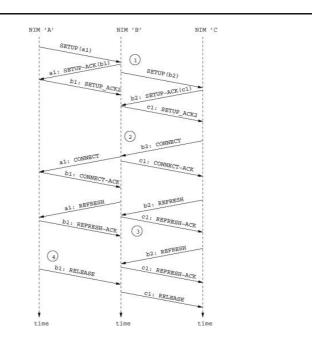
Missing - user preference, instant billing...

Depends on low value BW fillers

Complex to understand and manage

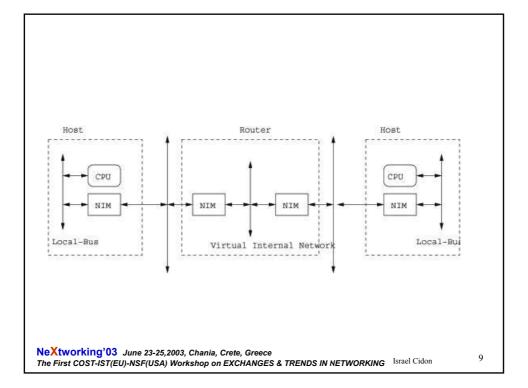
NeXtworking'03 June 23-25,2003, Chania, Crete, Greece
The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING Israel Cidon

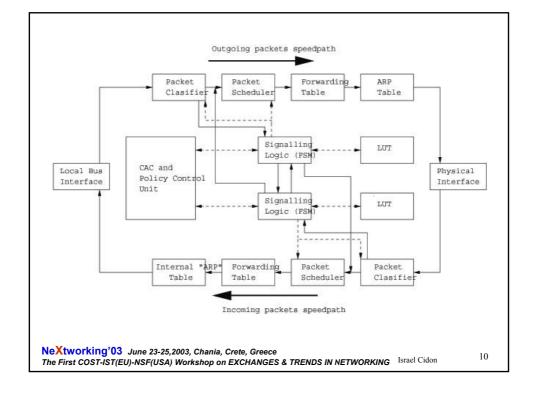
5

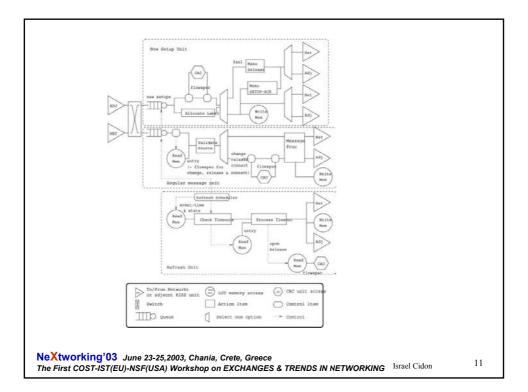

Possible brute force solution?

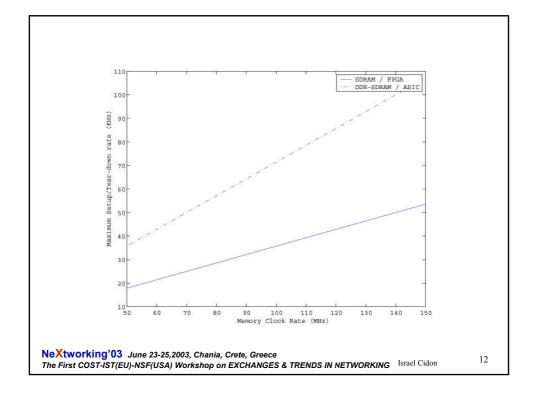
- Hardware implementation of old model
 - Hardware generated signaling
 - Hardware assisted QoS routing
- Implementation cost optimization
 - Save complexity and space not CPU cycles
- Do we need hardware optimized architecture?
 - Not essential in ATM but help understanding problems
- How we deal with routing?
 - Source routing caching, pre-computation
 - QoS based destination routing
 - Invest in accuracy or apply multiple path reservation

The KISS Architecture*


- Tailored around IP loose source routing
 - Support migration
 - Use route caching
 - Optimized for unicast
- Simple reservation, CAC and state structure
 - Random access
 - Soft-state protection
 - * Joint work with Dan Gluskin


NeXtworking'03 June 23-25,2003, Chania, Crete, Greece
The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING Israel Cidon




NeXtworking'03 June 23-25,2003, Chania, Crete, Greece
The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING Israel Cidon

8

60 Ways to grab this BW

- Hardware based signals further exploited
 - Fast multi-way reservation and release
 - Soft-state prevents resource locking
 - Relaxed accuracy and timely BW tracking
- Hardware supported QoS routing protocol
 - Side by side not extending current routing protocols
 - Use hardware extensive messaging link-state
 - Hardware to assist with distance vector
 - Hardware to assist with path computation

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece
The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING Israel Cidon

13

Back to basics

- Is QoS real obstacle or BW is damn cheap?
- Where are the HW/SW boundaries
 - Can anything be mapped to a NP
- Is full convergence essential?
 - Is IP the last network architecture?
 - Fast connection network can be separated
- Should standards define research?